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Name _  School ____________________________________   Date   

Rotational Equilibrium 
Purpose 

• To confirm that torque equals force times lever arm for a horizontal lever. 
• To weigh an unknown mass with a beam balance 
• To determine the weight of the beam balance. 
• To learn to calculate torque using the center of mass of an object, and to learn why this is possible. 
• To analyze systems where the forces are not perpendicular to the lever. 

Equipment 
We’ll use the Beam Balance Apparatus in this lab activity. 
You can get quick access help by rolling your mouse over most objects on the screen. Here’s a busy little figure explaining 
what’s what. 

 

Figure 1: The Beam Balance Apparatus 
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Theory 

Torque 
Up to this point in physics we haven’t allowed forces to act in such a way as to cause rotation. The forces acting on a grocery 
cart traveling along an aisle could only be exerted in such a way that no rotation of the cart was produced. As you know from 
experience, this can be accomplished by pushing straight ahead on the center of the handle of the cart or by pushing equally 
on the two ends of the handle. (This assumes no wobbly, squeaky wheels—generally a bad assumption). 

But as we know, bad things can happen at the end of the aisle when paths cross and carts can end up spinning off into the 
produce section. When this occurs the cart moves along some new path and often spins. Forces that tend to cause rotation are 
said to apply a torque to the objects they act on. 

Consider the three forces, F in Figures 2a-c. All three act in the plane of the page. The rod is hinged so that it can rotate 
around its axis of rotation which is normal (perpendicular) to the page. Thus the rod can only rotate in the plane of the page. 

The axis of rotation (×) is the point (or line) around which we want to 
calculate the torque. We can choose any point we like, but there will 
usually be a best choice which will make our calculations simplest. Or 
there may be a point specified in an assignment. E.g. “Find the torque 
around the door hinge.” 

The line of action of the force is an extended line collinear with the force. 
This is usually shown as a dotted line in figures. 

The lever arm, 𝒓" is the shortest distance between the axis of rotation and 
the line of action of the force. It is a line drawn from the axis of rotation so 
as to hit the line of action at a right angle. (Sometimes the character l is 
used to represent the lever arm). 

We define torque, τ (tau) as the product of the lever arm, 𝑟" and the 
magnitude of the force, F. 

 𝜏 = 𝑟"𝐹 (1) 

Another quantity, which sadly has no name, is r. r is the distance between 
the axis and the point of application of the force. Notice in Figures 2a-c 
that r and 𝑟" are sometimes, but not always, equal. 

1. Under what conditions are r and 𝑟" equal but non-zero? 

  

  

In Figure 2b, where the force is perpendicular to r, r and 𝑟" are equal. Thus 
the torque is simply r F. This is the maximum torque possible for a given r, 
and F. 

 

Figure 2a: Torque on a rod 

 

Figure 2b: Force perpendicular to r. 
Maximum torque 

The other extreme occurs when the line of action passes through the 
axis of rotation. In this case 𝑟	and	𝑟" = 0. Thus the torque is also 
zero. 

 

 

Figure 2c: Force collinear to r. Zero torque. 

Often 0 < 𝑟" < 𝑟. Thus 0 < 𝑟"𝐹 < 𝑟𝐹 as in Figure 2a. We will return to this general case in the last part of the lab. 
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Rotational Equilibrium 
We know that a body with no net force acting on it will be in 
translational equilibrium and have zero translational acceleration. 
As shown in Figure 3a two equal but opposite forces are able to cancel 
resulting in no translational acceleration. 

But if you give a spin to a ball by giving it a twist with your fingers you 
can give it a rotational acceleration even though the net force acting is 
zero. 

  

Fig 3a: a = 0 m/s2   

In Figure 3b, the two equal forces, F1 and F2 acting on the ball will not 
cause a translational acceleration but they will cause a rotational 
acceleration. Each force produces a counter-clockwise torque thus 
producing a non-zero torque. 

For a body to be in rotational equilibrium the net torque on it must equal 
zero. This is the case in both Figures 3c and 3d. 

  

Fig 3b: α = 0 rad/s2 

In Figure 3c the two equal forces F1 and F2 act with equal lever arms, 𝑟". 

Force F2 applies a negative, clockwise (cw) torque of –𝑟" F2. 

Force F1 applies a positive, counter-clockwise (ccw) torque of  𝑟" F1. 

 Σ τ = (–𝑟" F2) + 𝑟" F1 = 0 
  
Fig 3c: α = 0 rad/s2 

In Figure 3d the two non-equal forces F1 and F2 act with non-equal lever 
arms 𝑟" and 2𝑟".   F2 = 2F1. 

Force F2 applies a negative, clockwise torque of –𝑟" F2. 

Force F1 applies a positive, counter-clockwise torque of 2𝑟" F1. 

 Σ τ = (–𝑟" F2) + 2𝑟" F1 = (–𝑟" 2F1) + 2𝑟" F1 

 Σ τ = 0 

  

Fig 3d: α = 0 rad/s2 

In this lab we will be working with systems that are in rotational equilibrium. That is, where the vector sum of the torques 
about any axis equals zero. Equation 2 is called the Second Condition Equilibrium. 

 Στ any axis = 0 (2)
  

This is a vector equation where positive torques are defined as torques that would tend to produce a counter-clockwise 
rotation and negative torques would tend to produce clockwise rotation. Equation 2 can be used in ways similar to how we’ve 
used the Equation 3, the First Condition Equilibrium. 

  ΣF any direction = 0 (3)
  

The two equations can also be used together in situations where forces act to put a system in both types of equilibrium. For 
example, when you lean against a wall, there are forces exerted on you by the wall, the ground, and Earth’s gravity. If these 
forces and the torques they produce are not in balance, you will fall and spin on the way down! 
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Explore the Apparatus 

Let’s set up the apparatus just as it appears in Figure 1. 

1.  Click on one of the four rectangular clamps at the upper left of the screen. Drag and release it somewhere on the left end 
of the beam. It will snap in place. Drag it and release it at about the 15-cm mark. (We’ll work on precision in a moment). 

 The beam should rotate counter-clockwise but it doesn’t. The apparatus is designed to allow you to work with it as if 
your partner is holding it in place. Your “partner” can hold the beam steady and release it when ready in two ways. 

• Click the Release Beam button. The left end of the beam will fall. Not far. Your virtual partner caught it. 
Click Reset Beam to get your partner to hold it level again. 

• The other method is Auto-Release. With the beam still horizontal, click the “Auto-Release” check box. The left end 
of the beam will fall. Drag the support left or right. While the support is selected the beam will return to level so that 
you can better read it. Release the support and the beam will fall if it isn’t balanced. The same goes for the clamps 
and hangers. Drag the clamp and then release it. The beam will become horizontal and then reset upon release. 
You’ll probably want to use Auto-Release most of the time. I’ll use that in these instructions. 

To get back to where we started, click Reset All. Drag a hanger back onto the beam at the 15-cm mark. 

2.  Drag one of the four mass hangers and drop it when it’s over the clamp. It will snap to the clamp. 

3.  Add 300 g to the mass hanger. Click on the masses and note that the info box confirms that there’s 300 g on the hanger. 
Note the masses of the clamps (20 g) and hangers (50 g) in the list of information in Figure 1. So the total is 370 g. 
What if you put too much mass on a hanger? Try this. Right-click (Ctrl-click) on the masses on the hanger and click 
Remove Top Mass from the menu. This may come in handy later. OK, replace the mass you deleted. 

4. We now want to add a second clamp at 94.4 cm. Start by placing it at 94.0 cm. Using Figure 4a as a guide, do your best 
to place a hanger there. For a better view, Right-click (Ctrl-click) on the clamp and Zoom in to make fine adjustments. 
If you zoom in about three levels you’ll notice that there is a tiny set of 1-mm graduations inside the mass hanger clamp. 
See Figure 4a. You can even see them through a transparent section of the hanger. Drag the hanger left and right. Notice 
that the graduations are attached to the clamp not the meterstick. So they move against the background of the widely-
spaced 1-cm marks. These millimeter marks tell you how far the clamp is away from a 1-cm mark. 

 In Figure 4a the clamp is at 94.0 cm. Adjust yours to match. Notice how the central 1-mm mark, which defines the 
location of the hanger, aligns with the long 94.0-cm mark on the ruler. And there are 10 1-mm marks either side of it for 
the full 2-cm width between 94.0 and 95.0 cm. 

 

 Figure 4a:  94.0 cm Millimeter Scale Close-up Image 
 

 
 Figure 4b:  94.4 cm Millimeter Scale Close-up Image 
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 Carefully drag your clamp one millimeter to the right. A new 1-mm mark is now aligned with the 94.0-cm mark. Repeat 
for 2, 3, and then 4 mm. With each additional millimeter a new 1-mm mark will align with the 94.0-cm mark. Once you 
have moved the clamp 4 mm, the view should match Figure 4b. It’s sort of counterintuitive, but it works. 

 Now would be a good time to check to see if your other clamp is at 15.0 cm. You can either drag the enlarged apparatus 
to the right until you get there or zoom out and then back in. You might also notice on the way that the meterstick holder 
clamp has a similar millimeter scale. 

 Zoom back out. Add a hanger and 400 grams to the clamp. The beam almost balances when you drop the first 200 grams 
on. So the second one puts it way out of balance. 

5. We’ll use an upward force on the right side to bring the beam into equilibrium. Add a clamp at 88.0 cm. 

6. Drag the red ring hanging from a string and release it to let it attach to the clamp pin. The pin is at the center of the 
clamp. You’ll now see a Helium-filled balloon near the top of the screen. It’s pulling upward on the beam but not hard 
enough to balance it. 

7. Just below the beam support you’ll see “Buoyancies.” Click the up arrow beside the 10 in the red box. (These are called 
numeric steppers). It will increase to 12 and the balloon will expand a bit. This will add some “lift.” But not enough.  

Alert! 
The “12” should be interpreted to mean an upward force equivalent to the weight of 12 grams. This brings us to a special 
bit of notation that we’ll be using in this lab. It’s very convenient and some would say odd. Here’s how it works. 

As torque is the product of length and force we should measure length in meters and force in newtons. The length part is 
simple enough.  25 cm = .25 m. 

Also we’re using traditional masses labeled in grams which need to be adjusted to kilograms. Easy again.  

 400 g = .400 kg. 

But when we multiply by g (9.8 N/kg), we get .400 kg × 9.8 N/kg = 3.92 N. This is not quite so easy. So we want to 
simplify the calculation of .400 kg → 3.92 N. 

Instead of multiplying by g, we’ll write the force as .400 g N. 

“.400 g N” will be our shorthand for .400 kg × g newtons. That is .400 kg × 9.8 N/kg = 3.92 N. 

So our reading of 12 for the balloon’s lift force will be recorded as a force of .012 g N. 

8. Add helium until you get the beam in balance. When you get close you’ll see that there is a range of values that will get 
the beam to within .2% of balance and remain horizontal. See the reference to this in the info box on the lab screen. If 
balances were ideal, that is if they would only remain horizontal when the net torque was exactly zero, we would never 
get them in balance.  Fortunately, in our non-ideal world, friction at the pivot will allow the beam to stay horizontal if we 
get to within some small range of balance. This apparatus is designed to work in that fashion. Adjust the helium to 
produce the smallest magnitude (-0.544, -0.054, 0.4380) net torque. (Now your three torques all add to about zero). 

9. Note the pulley attached to the side of the upward string. Don’t touch it yet! What will happen to the beam if you push 
the pulley to the left? Why? Think about components of the tension in the string. 

  

  

  

10. Will the result be different for a push to the left vs. a push to the right? (Assume equal angles). Why? 
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11. Try it in both directions. Note that the farther you push it sideways the quicker the right end of the beam falls. 
For the following, push the pulley to the left to an angle similar to the one in Figure 2a. 
Look at the angled string. The force it exerts on the clamp is directed along the string. Now imagine the string as a force 
vector, up to the left. Form a mental image of the x and y-components of the tension. 
When the beam is in equilibrium, that is, horizontal, the line of action of the horizontal, x-component, Tx, passes directly 
through the rotation axis (×). Thus its lever arm is zero and it produces zero torque as shown in Figure 2c. 
The line of action of the vertical, y-component, Ty, is perpendicular to the beam. Its lever arm is the maximum possible 
length and produces the maximum possible torque. 
At what angle relative to the beam would that force, Ty be equal to half of T?        °  

12. Click the Protractor check box below the red Buoyancy numeric stepper. Click on the pulley and adjust the string to the 
angle you chose in #11. 

13. What buoyant force from the balloon will now be needed to balance the beam?     g N          Try it. 

14. Before we leave this exploration we need to take a look at the signs or directions associated with torque. We’ve 
mentioned this a couple of times but never explained it. The direction of a torque is, oddly, perpendicular to the plane of 
r and F. For example, if r and F were in the plane of this page we would say, 

• a torque that would tend to cause r to rotate clockwise (cw) is a negative torque and its direction is into the page. 
• a torque that would tend to cause r to rotate counter-clockwise (ccw) is a positive torque and its direction is out of 

the page. 

Set the apparatus as it was at the end of step 8 above. Decrease the buoyancy until the beam is just out of balance. The 
right end will fall, so there is too much clockwise, cw, torque which is negative. OK, this is sort of weird, but—close the 
fingers of your right hand with your thumb pointing upward. Now turn your hand so that your thumb is pointing into 
your computer screen at the center of the beam. 

Your fingers are now wrapped so that they’re “pointing” clockwise, in the direction of the torque, and your thumb is 
pointing into the screen. Notice how that matches the first bullet above. You can stop acting strangely now. 

Click once to add 2 “grams” of buoyancy. Note the magnitude of the negative net torque. Something like -1.585 units. 
This means that the beam is out of balance by that much clockwise torque. 

Add another 2 “grams.” You probably see something like -1.100 units. It’s less out of balance but still negative. 

Keep clicking and you’ll see it eventually switch to positive values and when the numbers get large enough, the info box 
will go blank, meaning that it’s no longer approximately in equilibrium. The beam will also flip counterclockwise. This 
time your thumb needs to point out of the screen to indicate the direction of the torque. 

We’ll see this system later with magnetism which is even weirder and employs even more embarrassing hand gestures! 
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Procedure  

I. Confirm that torque = force times lever arm for a horizontal lever. 
Click “Reset All” to make sure that the apparatus is in its default arrangement. Leave Auto-Release on. 

1. Drag and drop to attach a clamp at 0 cm. Attach a mass hanger to the clamp. This is Hanger 1. 

2. Add enough masses to the hanger for a total mass of 100 g including the clamp, hanger and added mass. Since the 
clamp’s mass is 20 g and the hanger’s mass is 50 g, you’ll need to add just 30 g. 
The 10 and 20-g masses are hard to grab. You can just grab the “10 g” and “20 g” labels below the mass images for 
convenience. Click on the masses on the hanger. The information box will read “Mass on this hanger = 30. Don’t forget 
to count the other 70 g when determining the total mass. 

For practice using rotational equilibrium you’ll explore five different scenarios. In each case you’ll make adjustments to a 
hanger on the right end to achieve balance. This will occur when the magnitude of the clockwise torque is equal to the 
magnitude of the counterclockwise torque. As a guide you’ll fill in the blanks in a rows in Tables 1 and 2. The counter-
clockwise torque due to the fixed mass at the left end of the beam is pre-calculated. 

torqueleft, ccw = lever arm × weight  = .500 m × .100 g N = .0500 g m N 

In Trials 1-3 you’re given known positions for the right hanger. You’ll then adjust its hanger weight to achieve balance. 

3. In Trial 1 the given value of 1.00 m in the first position column tells you to add a second clamp and mass hanger (we’ll 
call it “Hanger 2”) at 100 cm. Then following the order, a, b, c, d provided, determine each successive value 
theoretically, by calculation, and then experimentally. 

Table 1  Torque = (lever arm)  (force) 
Rotational Equilibrium: |Torque cw| = |Torque ccw| Weight, left end   .100 g N 

 Lever arm, left end  .050  kg 

 Torque, left end  .0500 g m N  

Left End, ccw (+) torque  Right End, clockwise (-) torque 
 

Trial 
Torque, τ 
(g m N) 

 Position 
(given) 

(m) 

 
Lever arm 

(m) 

Weight 
(theoretical) 

(g N) 

Weight 
(experimental) 

(g N) 

% difference 
(weights) 

1 .0500   1.00 a)  b)  c)  d) 

2 .0500   .60 a)  b)  c)  d) 

3 .0500   .680 a)  b)  c)  d) 
 

For Trial 3, show your calculations of the weight required to balance of the beam. 

|WeightLeft × lever armLeft| = |Weight (theoretical)Right × lever arm (given)Right| 

 

 

Weight (theoretical)Right =  

 

 

 

4. In Trials 4-5 you’re given known weights for the right hanger. You’ll then adjust its hanger position to achieve balance. 

5. In Trial 4 the known value of .200 g N for the weight tells you to adjust the weight on the right hanger to provide a total 
hanger weight of .200 g N. Then following the order, a, b, c, d provided, determine each successive value. 
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Table 2  Torque = (lever arm)  (force) 
Rotational Equilibrium: |Torque cw| = |Torque ccw| Weight, left end   .100 g N 

 Lever arm, left end  .050  kg 

 Torque, left end  .0500 g m N  

Left End, ccw (+) torque  Right End, clockwise (-) torque 
 

Trial 
Torque, τ 
(g m N) 

 Position 
(from theoretical 

lever arm) 
(m) 

Lever arm 
(theoretical) 

(m) 

Lever arm 
(experimental) 

(m) 

Weight 
(given) 
(g N) 

% difference 
(lever arms) 

4 .0500  b)  a)  c)   .200 d) 

5 .0500  b)  a)  c)   .150 d) 

For Trial 5, show your calculations of the position of the hanger required to balance of the beam. 

|WeightLeft × lever armLeft| = |Weight (given)Right × lever arm (theoretical) Right| 

 

 

 

 

 

 

II. Weighing an unknown object 
All of us have had the opportunity to be the “unknown weight” in the doctor’s office. The scales traditionally used work 
much like the one we’re working with. They just look different because there are some extra levers inside to allow it to 
balance your weight with the very small weights on the other side of the fulcrum. 

Click Reset All to make sure that the apparatus is in its default arrangement. Leave the support at the 50-cm point. 

1. Attach a clamp and hanger at a point somewhere to the left of the support stand. This is Hanger 1. 

2. The right-most mass in your mass set will act as our unknown. We want to determine its weight. Using the selector 
below the unknown mass, select any number from 2-10. (A particular number may be assigned to you). 

 Selected unknown mass number   

3.  Drop your unknown mass on Hanger 1. 

4. Attach a clamp and Hanger 2 somewhere to the right of the support stand. 

5. You now want to bring the beam into balance. To do this you can adjust the position of either mass. You can also adjust 
the weight on Hanger 2.  

6. Clearly show your weight and lever arm data by adding information to Figure 5. The unknown weight doesn’t include 
the clamp and hanger. (You don’t want your boots and backpack counted when you’re weighed!) 

7. Show your calculations in the space below the beam in Figure 5. 

8. Record your value for the unknown weight in the space provided. 
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Figure 5: Unknown weight data and calculations   Unknown weight =             g N 

 
 

 

 

 

 

 

 

 

III. Determine the weight of the beam. 
1.  Reset All and turn on Auto-Release. Now drag the support over to the left a bit. Obviously the beam’s weight provides 

some amount of torque. And also obviously, its net effect was zero until we moved the support. 

2. Drag the support to the 20 cm point. Zoom in to get it just right.  

 

Figure 6: Determine the weight of the beam 

3.  The beam is way out of balance. To bring it back into balance, place whatever masses are needed at the 0 cm point.  

4. What total weight was required including clamp and hanger?   g N 

We now have a situation where the beam’s weight is being balanced by the weights we added at 0 cm. But its weight is 
actually distributed evenly along its full length which extends in both directions from the pivot. So how can we use torque to 
determine the actual weight of the beam when it’s scattered along its whole length? That is, where is the beam? 

Here’s another way of asking the question. Suppose we could replace our beam with a weightless beam. The weight we now 
have hanging at the left end would cause the weightless beam to flip counter-clockwise pretty fast. Now suppose we had a 
mass (plus hanger and clamp) equal to the beam’s weight. Where would we hang it from our weightless beam to bring the 
beam back into balance? 

There are two ways we can go about looking at the torque due to an extended object as opposed to the torque due to our 
masses which hang from points along the beam. We’ll look at each one. But first we need to make an equation. 
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Equation for torque due to a thin rod of uniform density 
We need to divide the meterstick up into zillions of tiny segments, each with tiny masses. Then we’ll add the torques due to 
each of these little segments. Calculus lovers, this is for you. Everyone else, don’t panic about this derivation. I’m going to 
explain it as best I can, but there’s magic at the end. And it’s been a very long time since I’ve done magic. 

In Figure 7a you see our rod divided into lots of tiny segments which we can make as small as we like. Each segment is 
identical in length and hence mass and weight. The axis of rotation is at the left end. 

The torque due to each segment equals its weight, wi, times its lever arm, ri. We’ll describe the weight in terms of the length 
using the linear density, µ, which is the mass/length in kg/m. E.g. A 2-cm section will have a mass of  (.02 m)(µ kg/m) 

 
Figure 7a: Torque of a thin rod about one end. 

The magnitude of the net torque is the sum of these torques: 

𝜏 = 𝑟.𝑤. + 𝑟1𝑤1 + ⋯+ 𝑟3𝑤3 = 𝑟.𝑚.𝑔 + 𝑟1𝑚1𝑔 +⋯+ 𝑟3𝑚3𝑔 
 

𝜏 =6𝑟7	𝑤7

3

78.

=6𝑟7	𝑚7𝑔
3

78.

=6𝑟7	𝜇	Δ𝑟	𝑔
3

78.

= 𝜇	𝑔6𝑟7	Δ𝑟
3

78.

 

Note that µ Δr is mass/length × the length of one tiny mass segment which gives the mass of that segment. So we have the 
lever arm × the mass × g which is the torque for a small section. We need to convert this infinite sum to an integral to 
produce an equation. That looks like the following. 

𝜏 = 𝜇𝑔; 𝑟Δ𝑟
<

=
= 𝜇𝑔

𝑟1

2 │@8A

@8<
 

𝜏 = 𝜇𝑔
𝐿1

2 = 𝜇𝐿𝑔
𝐿
2 = 𝑊

𝐿
2 

 𝜏 = 𝑊 <
1
 (4) 

So for a regular beam of uniform linear density like ours, with the axis at one end, the torque equals the entire weight times 
half the length of the beam! So it acts as if all its weight is at its center which is why we call it the “center of mass” or “center 
of gravity.” So that’s the answer to the question “Where is the beam?” For calculating torque due it its weight we can treat it 
as if all its weight was at its center. Note that this clockwise torque is actually negative. We’ve just been considering the 
general case in our derivation. 

But it also works if you move the axis to any point along the beam. Consider the beam in Figure 7b. We’ve moved the axis of 
rotation to the position shown. If we now look at each section of the beam—left of the axis and right of the axis—we can find 
the torque due to each and add them to find the torque around this arbitrary point. 
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Figure 7b: Torque of a thin rod about a point along the rod. 

Let Wb = the total weight of the beam. The left end is 5 segments long and the right is 13 segments long, so the two sections 
have weight given by 

 WL = D
.E

Wb   and   WR = .F
.E

Wb 

Using our equation for the torque due to a beam rotated around its end (equation 1) for each segment of width ws, and 
considering the positive and negative directions of the counter-clockwise and clockwise torques respectively, 

 τL = WL x rL = D
.E

 Wb x 2.5 ws 

 τR = – WR x rR = – .F
.E

 Wb x 6.5 ws 

 Στ = τL – τR =  D
.E

 Wb x 2.5 ws – .F
.E

 Wb x 6.5 ws 

 =  D×1.D
.E

 Wb ws – .F×H.D
.E

	Wb ws 

 = (D×1.D)	–(.F×H.D)
.E

 Wb ws 

 Στ = – L1
.E

 Wb ws = – 4 Wb ws 

But this is just the torque due to a force equal to the weight of the beam times the width of four segments. And its torque is 
negative. Thus the total torque due to the two independent ends is the same as the torque due to a force equal to the weight of 
the beam acting four segments to the right of the axis. This point is at the center of the beam. 

So even if we move the axis to some arbitrary point along the beam, the torque about that point is the same as the torque 
applied by a single force equal to the beam’s weight acting at the center of the beam.  

Important Punch line: If you know the location of the center of gravity of an extended body you can treat it as 
if all its weight acts at that point for the purpose of calculating torques. 

Where were we? We were trying to find the weight of the beam using the arrangement in Figure 8. We can now do that using 
our experimental value for the weight at 0 cm required to bring the beam into balance. You recorded that value in #4 above. 
The torque equation is just 

|Torqueccw| due to the hanging mass at 0 cm = |Torquecw| due to the beam’s weight at 50 cm. 

5. Calculated weight of the beam =      g N 

Show your calculations of the weight of the beam 
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6. Calculate the torque due to the weight of the beam. 

Show your calculations of the torque due to the weight of the beam. 

 

 

 

 

 

We said that there were two ways of looking at this situation. It’s worth looking at the second way because it causes a lot of 
confusion. Here’s the point of confusion: “It seems like we just ignored the left end of the beam. How can we do that?” 

Figure 8 shows the method we just used with the mass hanger matching the torque due to the entire beam. 

 
 
 
 
 
 

Figure 8  

This time we’ll look at the beam as two independent segments either side of the fulcrum, each with its own weight and center 
of gravity as shown in Figure 9. Notice that we now have some extra positive torque on the left end. But we’ve also increased 
the torque on the right end since the center of gravity of the right end is at its center not the full beam’s center. Perhaps they’ll 
offset! We’ll now find the torque due to each end of the beam and the net torque due to the two together. We can then 
compare them to the result we found when looking at the entire beam with its weight acting at its center of mass. 

 
 
 
 
 
 

Figure 9  
7. To find the weight of each end we need the linear density, µ. The linear density is the mass/length for the beam. You 

know both its mass and length now. 

 Show the calculations in this space → µ = mass (kg) / length (m) =  

 µ =     kg/m 

8. The left end of the beam is .200 m long. Using mass = µ × length, determine the mass of the 20 cm left end. 

 mleft end =    kg 

9. The center of gravity of the left end is at the center of this 20-cm section. 

 lever arm of left end =    m 

10. Similarly, 

 mright end =    kg 

 lever arm of right end =    m 

 



KET Virtual Physics Labs   KET © 2019  

 

VPL Lab  – Torque, Rotational Equilibrium 13 Rev 12/19/18 

11. Calculate the ccw torque and cw torque with this new configuration of the beam. As before we’ll ignore the mass 
hangers. We just want the total torque due to the two ends of the beam. 

Show your calculations of the positive counter-clockwise and negative clockwise torques and the net torque. 

Counter-clockwise torque by the left end of the beam 

 

Clockwise torque by the right end of the beam. 

 

 

 

 

 

 

Net Torque =   

12. How do the results of the two methods of calculating the torque due to the weight of the beam compare? 

  

  

So we’re not really ignoring the left end. The two ends together provide a total clockwise torque equal to the torque due to 
the entire beam if we consider its entire weight to act at its center of gravity. 

IV. The torque due to forces not perpendicular to the lever  

You saw in the exploration section that a force will produce 
its maximum torque when it acts perpendicular to the 
“lever.” That is, when it acts perpendicular to r. (See Figures 
2a-c). But in many cases, that’s not the most convenient 
choice. The weight of the sign in Figure 10 produces a cw 
torque that must be countered by an equal ccw torque. The 
guy wire supplying this torque would be under the least 
tension if it acted horizontally. (Wire 1). But they often need 
to be attached to the ground (Wire 2). Thus they’re under a 
larger tension due to the reduced lever arm. This arrangement 
requires thicker wires, strong anchors, etc. 

 

Figure 10 

The torque equation is an example of a cross (or vector) product. A cross product is found to describe situations where the 
product of two vectors is maximum when they are at right angles. (We find the other alternative in the calculation of work 
where the work is maximum when the force and displacement are parallel. This is called a dot (or scalar) product). 

In a cross product, the product of two non-parallel vectors is 

a. a vector perpendicular to the plane formed by the two vectors. 
In our case the new vector is the torque and its direction is out of the page (+) when the force tends to cause a 
counterclockwise (ccw) rotation and into the page (–) when the force tends to cause a clockwise (cw) rotation. 

b. equal to the product of the magnitudes of the two vectors times the sign of the angle between them. 
In the case of torque, that product is given by 

𝛕 = 𝐫 × 𝐅 = 𝒓	𝑭	𝒔𝒊𝒏	𝜽   where θ is the angle between r and F. (5) 

It’s fairly simple to think about increasing the amounts of quantities like mass, force, length, brightness, current, etc. Just 
push harder, etc. But with torque the sin θ term plays a very big role and it’s not so intuitive. And there are a lot of situations 
such as the one in Figure 10, where we have to make smart design decisions. 
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It’s useful to think about the equation for torque in one of two different ways depending on the situation. Figures 10a and 10b 
illustrate the same torque but are drawn to emphasize two different ways of thinking about how the torque would change with 
changes in the direction of the force. In both cases, F and r are the same. But the torque changes as we vary the angle, θ, 
between F and r. It can be helpful in some cases to think about how changing θ changes the magnitude of F sin θ, the force 
perpendicular to r. In other cases it’s more helpful to think about how changing θ changes the lever arm, 𝑟". 

Remember from figures 2a-c that the torque equals the product of the force and the lever arm. And the lever arm is the 
distance between the rotation axis and the line of action of the force. 

Case I. τ = r F sin θ = r 𝐹"  

The force, F can be represented in terms of its two components, F sin θ and F cos θ. The total 
torque would be the combined effect of the torques of these two components. Add the line of 
action and lever arm for each force to the figure. 

Mentally animate the figure by rotating F through angles from θ = 0° to 90° and observing F|| and 
𝐹". 

F|| = F cos θ, is the component of the force collinear with r and as a result passes through the axis 
and has no lever arm. Thus F|| produces no torque. 

𝐹" = F sin θ, is the component of F perpendicular to r and thus provides a torque of 

  τ = r (F sin θ) = r 𝐹"  

As θ increases, 𝐹" becomes longer indicating a larger horizontal force.  

 
Figure 10a 

Case II. τ = r sin θ F = 𝑟"𝐹 

The lever arm, 𝑟" is the shortest distance between the chosen rotation axis and the line of action of 
the force. The torque equals the product of the lever arm, 𝑟" and the force, F. As θ changes, the 
lever arm, 𝒓" of the force F increases from 𝑟" = 0 to 𝑟" = 𝑟 

Mentally animate the figure by rotating F through angles from θ = 0° to 90° and observing 𝑟". 

𝑟" = r sin θ, is the component of r perpendicular to F and thus provides a torque of 

 𝜏 = 𝑟 sin	 𝜃 𝐹 =	 𝑟"𝐹  

In both cases your animations should have shown that the torque increases with θ. Let’s try it with 
our apparatus using our balloons again. 

 
Figure 10b 

 
Modeling a construction crane 
With just a little imagination we can produce a pretty good model of a construction crane with our apparatus. (Google 
“construction crane” for a lot of nice images). Ours is a tower construction crane. 
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Figure 11: The Tower Construction Crane 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 12  

We’ll use Figure 12 as a starting point for building our crane which we’ll use to investigate torques involving non-right 
angles between r and F. 

1. Reset All. Turn on Auto-Release.  

2. Turn on Massless Clamps. This means that the clamp’s mass is now 0 grams rather than 20 grams. 

3. Add a clamp and mass hanger at the 30-cm point. Add 150 g for a total of 200 grams. We’ll leave this as a constant 
setting in this section of this activity. It will produce a constant known torque to balance a counter-torque which we’ll 
produce while varying the tension in the jib tie cable and the angle of that cable. 
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4. Add a clamp at the 10-cm point. 
 (For insurance purposes be sure to zoom in and get things just right. There are spectators down there—mostly envious 

men wanting to check a big item off their bucket lists). 

5. We need a clockwise torque to balance the 200-g mass. Thus we need an upward force. Drag the loop of one of your 
balloons and attach it to the clamp at 10 cm. Nothing will happen because the balloon doesn’t supply enough buoyant 
force to counter the torque of the 100-g mass.  

6. Adjust the balloon’s numeric stepper until the beam comes into balance. 

 You should find that 100 grams is required for balance. Here’s the math. 

  𝜏XY=XZ[7\] = −𝜏X=_`a]@XY=XZ[7\] 
 
 or using absolute values |𝜏XY=XZ[7\]| = |𝜏X=_`a]@XY=XZ[7\]| 
 
 omitting the |  |’s  (𝑟cdYY==`")(𝐹cdYY==`) = (𝑟ed`f]@")(𝐹ed`f]@) 
 
 (.400 cm) (.100 g N) = (.200 cm) (.200 g N) 

Just as we did earlier we’ll use the balloons not just to provide an upward force but to allow for non-vertical forces. 

7.  Grab the pulley by its wooden handle and pull it to the right and release it. Down goes the left end 
of the beam which means that there’s insufficient clockwise torque. (Excellent band name).  

There are two ways of explaining the reduction in torque. You’ll recognize them from the introduction to this section. 

• The y-component, 𝐹", of the tension force is reduced. 
• The lever arm, 𝑟cdYY==`", is reduced. 

Let’s try both ways of looking at this. 

8. To measure our angles we’ll need a protractor. Click the check box under your balloon’s mass stepper. 
Pull the string over to 60°. Is θ = 60°? No. (See Figure 16). 
In the torque equation θ is the angle between r and F where r is a line from the center of the support pivot out to where 
the string attaches to the clamp. And F is the force provided by the string tension. So θ is the compliment of 60°. We’ll 
call the 60° angle read from the protractor ϕ. You’ll record both angles in Table 3. 

Trial 1, Cases I and II 

9. Adjust the pulley to ϕ = 0°. This is the first entry in the Table 3. We’ve already 
looked at this case and done the calculations for Case I in #6 above. So you should 
be able to fill in all but the last two columns in the first row. Note that the last five 
columns are designed to differentiate between Case I and Case II discussed earlier. 

10. The last two columns are also simple for this first case. In this case 𝑟" = 𝑟 so you 
know 𝑟". And you know Fb. 
You should find that your torque values in columns 6 ((𝑟)(𝐹")) and 8 (𝑟"𝐹h) are 
equal. 

 
Figure 13: θ = 90° 
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Trial 2, Case I.  τ = r F sin θ = r 𝐹"      Variation in torque due to change in  𝐹" 

11. For Trial 2, adjust the pulley so that θ is 60° as shown in Figure 14 and listed in 
Table 3. Clearly the beam is no longer in balance. Add Helium to the balloon until 
equilibrium is again achieved. It won’t take much. The figure at the right should 
show why. Record the new Fb value. 

 The beam is now back in balance. What happened to 𝑟𝐹" to bring it back to 
equilibrium? r is still the same. It would only change if we moved the hanger. So it 
must be 𝐹" that changed. 𝐹" now equals the original Fb, 100 g N. 

 Fb is directed along a line going up to the pulley. The magnitude of 𝐹" is equal to 
the side opposite θ. But it acts at the location shown in the figure. As we increased 
Fb, 𝐹", the component of F perpendicular to r increased proportionally. 𝐹" = Fb sin 
60° 

12. Record 𝐹", and r which is still .4 m. Calculate and record 𝑟𝐹". 

 
 

 
Figure 14: θ = 60° 

Trial 2, Case II.  τ = r sin θ F = 𝒓"𝑭      Variation in torque due to change in  𝒓" 

13. The system was initially in balance but then we changed the angle and had to 
increase Fb to restore balance. The actual force, F, acting is Fb. So something had 
to decrease to keep the torque equal to .040 g m N. r is clearly still 40 cm but 
what is 𝑟", the lever arm of the tension in the string which we’re calling Fb? 
The lever arm is the shortest distance between the axis at the support pivot and the 
LOA of Fb. It will always strike the LOA at a right angle. 

14. We need to measure the lever arm, 𝑟". Click the check box beside the “Lever Arm 
Tool.” A tape measure will appear. Click and drag the black rectangle up to the 
left. Adjust the tape so that it’s perpendicular to the string. The distance it 
measures should be equal to about r sin 60°. Calculate and record that value in the 
table. Does the ruler’s value agree? 

 

Figure 15: The lever arm, 𝒓" 

15. Continue with the rest of the table by adjusting θ to the angles 45° and 60°. Hopefully your torques will all agree. They 
should since they are always being used to balance the torque provided by the mass hanging at 30 cm. 

Table 3  Torque = r F sin θ = r sin θ F  
 Torque due to mass hanger at 30 cm ________  g m N 

	 	   Case I.  τ = r F sin θ = r 𝑭"  Case II.  τ = r sin θ F = 𝒓"𝑭 

	
Trial	

ϕ 
(°) 

θ 
(°) 

Fbuoyant 
(g N) 

𝐹"=Fb sin θ 
(g N) 

r 
(m) 

(𝑟)(𝐹") 
(g m N) 

 𝑟"= r sin θ 
(m) 

𝑟"𝐹h 
(g m N) 

1 0 90 .100       

2 30 60        

3 45 45        

4 60 30        
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Figure 16: Use of the 
Lever Arm Tool 

 

 

 

 


